Neutropaenia with biologics

First Excellence in Rheumatology Meeting Istanbul. 19th February, 2011

> Professor Peter Taylor, MD, PhD, FRCP Kennedy Institute of Rheumatology Imperial College, London.

Overview and learning objectives

- The role of the neutrophil in health and in rheumatoid arthritis
- Physiological regulation of neutrophil number and function
- What effect do biologic anti-cytokine therapies have on neutrophils in RA?
- Are there clinical implications of these effects of anti-cytokine therapies?
- Are there differences between different cytokines inhibited?
- What are the management implications?

Cytokines Are Important Regulators of Rheumatoid Arthritis Pathogenesis

Cytokines regulate many biological processes, including immune and inflammatory responses¹
 Cytokine-driven immune and inflammatory responses mediate target tissue pathology and systemic disease in rheumatoid arthritis²

1. O'Shea JJ. Ann Rheum Dis. 2004;63(suppl 2):ii67-ii71; 2. McInnes IB, Schett G. Nat Rev Immunol. 2007;7(6):429-442.

Innate Immunity

First line defense; consists of non-specific, rapidly occurring responses that are mediated by phagocytic and natural killer cells as well as soluble molecules.

Murphy K, et al. Basic concepts in immunology; Innate immunity. In: Janeway's Immunobiology. 7th ed. New York, NY: Garland; 2008:1-38, 39-108.

Differentiation, release, recruitment and activation of neutrophils

Eyles JL et al. (2006) Nat Clin Pract Rheumatol 2: 500–510

Neutrophils

13 microns diameter
Segmented nucleus
Pink granules on H+E
Primary granules
Peroxidase +ve
Secondary granules
Peroxidase -ve

Granulocyte Production

Maturation sequence in marrow

- Myeloblasts
 15 hrs
- Promyelocytes 24 hrs
- Myelocytes 104 hrs
- Metamyelocytes 40 hrs
- Band forms66 hrs
- Neutrophils 95 hrs
 Circulation half-life 6.7 hrs

The major biologic actions of G-CSF

Eyles JL et al. (2006) Nat Clin Pract Rheumatol 2: 500–510

Neutrophil Numbers

2.26 x 10⁹/kg in bone marrow (3 x p.b.)
0.7 x 10⁹/kg in blood compartment
75 kg patient has 50 x 10⁹ neutrophils in blood compartment
5 litre blood volume
? Neutrophil count = 10 x 10⁹/litre
But half marginated, ∴ 5 x 10⁹/litre

RA inflammation is orchestrated by proinflammatory mediators

The influx and activation of the various cells are regulated by chemokines, adhesion molecules, and a network of inflammatory cytokines

Neutrophil margination in RA synovium

Mononuclear cells

Neutrophil Granules

Primary

- "Azurophil", myeloperoxidase +ve
- Microbicidal enzymes, hydrolases, etc
- Secondary
 - "specific", lactoferrin +ve
 - Cytochrome b, lactoferrin, lysozyme, hydrolases, plasminogen activator, B12 binder

Gelatinase granules + secretory vesicles

Neutrophil Granules

Eyles JL et al. (2006) Nat Clin Pract Rheumatol 2: 500–510

How Neutrophils Work

Circulate at 300-1000 microns/sec
 Tumble along endothelium
 Adhesion and extra-vascular

- migration
- Chemotaxis
- Phagocytosis
- Respiratory burst
- Nitric oxide generation
- Apoptosis

Potential neutrophil effector functions at sites of infection or inflammation

Eyles JL et al. (2006) Nat Clin Pract Rheumatol 2: 500–510

Neutrophil function

Neutropenia

Reference range 2 – 7 x 10⁹/I
Ethnic neutropenia 1 x 10⁹/I
Neutropenia = < 1 x 10⁹/I *Clinical problems uncommon > 0.5 x 10⁹/I*Severe neutropenia = < 0.1 x 10⁹/I

Migration of neutrophils from blood to tissue

Targeting TNF in rheumatoid arthritis

Receptor-bound tumour necrosis factor alpha

TNF Production, Action or Neutralisation

TNF and TNF Receptor "Systems"

Adapted from J. Sibilia with permission

Binding to membrane bound TNF

- The anti-TNFs can bind to membrane TNF and reverse signal into the cell on which it is expressed
- This signalling can produce various cellular effects such as inhibition of LPS driven cytokine secretion, apoptosis and neutrophil degranulation

Reverse signalling

Various intracellular

Mitoma H et al. *Arthritis Rheum* 2008;58:1248-57 Nesbitt A et al. *Inflamm Bowel Dis* 2007;13:1323-1332 Effects

TNF inhibitors: biologic-ligand complexes

golimumab, adalimumab or infliximab

TNF binding and monomeric complex formation

TNF bivalent binding and polymeric immune complex formation with anti-TNF mAbs

Taylor PC. Curr Opin Pharmacol 2010 ;10:308-15.

Anti-TNFs : Differences between Agents

I	Neutralisat of sol. TN	ion IF	Complem. lysis and ADCC		Complex formation		Inhibition of cytokine I secretion
		Binding to m/b TNF		Apoptosis		Neutrophil death	
Etanercept	t +++	++	++	++	-	++	-
Adalimuma	ab ++	+++	+++	+++	+++	+++	++
Infliximab	++	+++	+++	+++	+++	+++	++
Certolizum	ab +++	+++	-	-	-	-	+++

Taylor PC. Curr Opin Pharmacol 2010 ;10:308-15.

Biology of TNF in RA

Tak, Taylor et al Arthritis Rheum 1996, 39; 1077, Taylor et al, Arthritis Rheum 2000; 43:38

Reciprocal effects of anti-TNF α on lymphocyte and neutrophil counts

Paleolog et al, Arthritis Rheum 1996, 39; 1082

p<0.05, ** p<0.01, *** p<0.001 *versus* pre-infusion † p<0.05, †† p<0.01, ††† p<0.001 *versus* change in placebo

STUDY DESIGN

10 Patients with active RA (including at least one swollen knee)

Mean percentage radiolabeled granulocyte recovery

Increased intravascular recovery of ¹¹¹In-granulocytes after 10 mg/kg infliximab

Taylor *et al*, Clin Sci 1999, 97: 85

Neutrophil margination

Which sites in the whole body marginating granulocyte pool are affected?

Pre- treatment

2 weeks post 10mg/kg

Organ activity is unchanged after injection of ¹¹¹In-granulocytes infliximab

Taylor *et al*, Clin Sci 1999, 97: 85

Infliximab reduces inflammatory cell recruitment to joints

Taylor et al, Arthritis Rheum 2000; 43:38

Review of reported adverse events with etanercept and infliximab

Clinical Category	Etanercept	Infliximab
Adverse Event*	Pts (Rate/100 Pts)	Pts (Rate/100 Pts)
All Fatalities	342 (0.274)	199 (0.097)
Fatal Sepsis	63 (0.050)	28 (0.014)
Anemia NOS [†]	57 (0.046)	32 (0.016)
Neutropenia/Agranulocytosis	29 (0.023)	15 (0.007)
Leukopenia Excluding Neutropenia	75 (0.060)	11 (0.005)
Thrombocytopenia NOS [†]	64 (0.051)	21 (0.010)
Pancytopenia	29 (0.023)	16 (0.008)
Lymphoma	41 (0.033)	44 (0.021)
Cardiopulmonary Arrest	43 (0.034)	18 (0.009)
Heart Failure	248 (0.198)	132 (0.064)
Anaphylaxis	0 (0.000)	40 (0.020)
Serum Sickness	1 (0.001)	24 (0.012)
Lupus-like Syndrome	16 (0.013)	59 (0.029)
Histoplasma Infections	0 (0.000)	22 (0.011)
Tuberculosis	15 (0.012)	73 (0.036)
Central Demyelination/NOS [†]	33 (0.026)	8 (0.004)

All adverse events were coded using MedDRA; [†]NOS = Not Otherwise Specified. Callegari P, et al. EULAR; June 9-12, 2004; Berlin. Abstract SAT0456. [Evidence Level B]

Review of reported adverse events with etanercept and infliximab

Clinical Category	Etanercept	Infliximab
Adverse Event*	Pts (Rate/100 Pts)	Pts (Rate/100 Pts)
All Fatalities	342 (0.274)	199 (0.097)
Fatal Sepsis	63 (0.050)	28 (0.014)
Anemia NOS [†]	57 (0.046)	32 (0.016)
Neutropenia/Agranulocytosis	29 (0.023)	15 (0.007)
Leukopenia Excluding Neutropenia	75 (0.060)	11 (0.005)
Thrombocytopenia NOS [†]	64 (0.051)	21 (0.010)
Pancytopenia	29 (0.023)	16 (0.008)
Lymphoma	41 (0.033)	44 (0.021)
Cardiopulmonary Arrest	43 (0.034)	18 (0.009)
Heart Failure	248 (0.198)	132 (0.064)
Anaphylaxis	0 (0.000)	40 (0.020)
Serum Sickness	1 (0.001)	24 (0.012)
Lupus-like Syndrome	16 (0.013)	59 (0.029)
Histoplasma Infections	0 (0.000)	22 (0.011)
Tuberculosis	15 (0.012)	73 (0.036)
Central Demyelination/NOS [†]	33 (0.026)	8 (0.004)

All adverse events were coded using MedDRA; [†]NOS = Not Otherwise Specified. Callegari P, et al. EULAR; June 9-12, 2004; Berlin. Abstract SAT0456. [Evidence Level B]

Targeting IL-6 in rheumatoid arthritis

IL-6 membrane receptor

Tocilizumab receptor complex

Immune effects: IL-6/sIL-6R contribute to leukocyte recruitment

IL-6/sIL-6R increases leukocyte recruitment by:

- Activating production of a subset of chemokines by endothelial cells¹
- Upregulating expression of adhesion molecules¹

IL-6 supports neutrophil recruitment²

Adherent neutrophils

Romano M, et al. Immunity 1997; 6:315–325;
 Lally F, et al. Arthritis Rheum 2005; 52:3460–3469.

IL-6R inhibition and neutrophil counts

Controlled 6-Month Studies (Combination Therapy)

Pooled data from 6 month tocilizumab studies safety population

Overview on Grade 3 and 4 Neutropenia: lowest value reported (CTC Grades)

	TCZ 8 mg (n=288)	MTX (n=284)	TCZ 4 mg + DMARD (n=774)	TCZ 8 mg + DMARD (n=1582)	DMARD (n=1170)
Grade 1	51	22	88	298	30
(1500-LLN/mm ³)	(18%)	(8%)	(11%)	(19%)	(3%)
Grade 2	30	6	53	179	10
(1000-1500/mm ³)	(10%)	(2%)	(7%)	(11%)	(< 1%)
Grade 3	9	1	9	48	-
(500-1000/mm ³)	(3%)	(< 1%)	(1%)	(3%)	
Grade 4 (< 500/mm ³)	-	-	3 (< 1%)	5 (< 1%)	-

No serious infections observed with grade 3 and 4 neutropenia

5 Non-serious infections seen in grade 3, 4 neutropenia (two bronchitis events, one sinusitis, one pharyngitis, and one conjunctivitis)

Pooled data from 6 month tocilizumab studies safety population

No link between degree of neutropaenia following TCZ and incidence of infections

6-month pooled data from TCZ trials (safety population)

Patients, n (%)	Placebo + DMARD (n = 1170)	TCZ 4 mg/kg + MTX (n = 774)	TCZ 8 mg/kg + DMARD (n = 1582)
Normal	1122 (95.9)	614 (79.3)	1047 (66.2)
Grade 1 (≥1.5 to <2.0 × 10⁰/l)	30 (2.6)	88 (11.4)	298 (18.8)
Grade 2 (≥1.0 to <1.5 × 10⁰/l)	10 (<1.0)	53 (6.8)	179 (11.3)
Grade 3 (0.5 to <1.0 × 10 ⁹ /I)	—	9 (1.2)	48 (3.0)
Grade 4 (<0.5 × 10 ⁹ /I)	1 (<1.0)	5 (<1.0)	6 (<1.0)

No serious infections reported within 30 days of lowest neutrophil count

Pooled trial data to October 2009

Serious infections (TOWARD study)

Patients, % (n)	Placebo + DMARDs (n = 414)	Tocilizumab 8mg/kg + DMARDs (n = 802)
Patients with at least one serious infection	1.9% (8)	2.7% (22)
Total number of events	8	23
Cellulitis	-	0.6% (5)
Pneumonia	0.5% (2)	0.4% (3)
Herpes Zoster	-	0.4% (3)
Bronchitis	0.2% (1)	0.1% (1)
Pyelonephritis	0.2% (1)	0.1% (1)
Abscess limb	0.2% (1)	-
Arthritis bacterial	-	0.1% (1)
Cellulitis staphylococcal	-	0.1% (1)
Endocarditis enterococcal	-	0.1% (1)

Genovese MC et al. Arthritis Rheum 2008;58:2968-2980

Changes in neutrophil counts (CTC grade)* TOWARD study

Common Terminology Grade	Placebo + DMARDs n = 414	Tocilizumab 8 mg/kg + DMARDs n = 802
Normal	94.9%	65.6%
Grade 1 (<lln 1.5="" 10<sup="" x="" –="">9/L)</lln>	4.3%	18.8%
Grade 2 (<1.5 – 1.0 x 10 ⁹ /L)	<1%	11.6%
Grade 3 (<1.0 – 0.5 x 10 ⁹ /L)	-	3.7%
Grade 4 (<0.5 x 10 ⁹ /L)	-	_

*Neutrophil count decreases were transient

Genovese MC et al. Arthritis Rheum 2008;58:2968-2980

Neutropaenia

Clinically significant neutropaenia occurred in 3.4% (Grade III*) and 0.3% (Grade IV**) of patients treated with TCZ plus DMARDs

There was no clear association between decreased neutrophils and the occurrence of serious infections

If clinically significant neutropaenia follow SPC recommendations for dose modification

*CDC Grade III neutropenia (0.5 to < 1 × 10⁹/l) **CDC Grade IV neutropaenia (<0.5 × 10⁹/l)

Tocilizumab: Summary of Product Characteristics.

Risk Mitigation: Neutrophils

- TCZ should not be initiated in patients with neutrophils < 2000 cells/mm³
- Neutrophils should be monitored 4-8 weeks after the first infusion in all patients
 - Repeat labs as clinically indicated

Lab Value (cells/mm ³)	TCZ Modification
ANC ≥ 1000	Maintain dose
ANC 500-1000	Temporarily stop TCZ when ANC > 1000 then resume with 4 mg/kg
	and return to 8 mg/kg as clinically appropriate
ANC < 500	Discontinue TCZ

From: Moreland *et al*, Arthritis Rheum **40**: 397

IL-1 Receptor Antagonist

In anakinra trials:-

Neutropenia occurred in 2.4% patients

■Versus 0.4% in placebo treated patients.

(Amgen SPC for Anakinra)

Combination IL-1 and TNF blockade

Event	Etanercept only (n 80)	Half-dosage etanercept + anakinra (n 81)	Full-dosage etanercept + anakinra (n 81)
Any infection Infection resulting in antibiotic	32 (40.0)	30 (37.0)	38 (46.9)
administration or hospitalization	0 (0.0)	3 (3.7)	6 (7.4)
Infection leading to withdrawal	0 (0.0)	2 (2.5)	2 (2.5)
Serious infection	0 (0)	3 (3.7)	6 (7.4)
Serious pneumonia	0 (0)	1 (1.2)	2 (2.5)
Serious cellulitis	0 (0)	1 (1.2)	2 (2.5)

Two patients in the full-dosage etanercept plus anakinra group experienced neutrophil count < 1.0 10⁹/I

Both patients completed the study, and no clinical events were associated with the neutropenia.

Targeting GM-CSF in RA

MAbs against GM-CSF and GM-CSF R in development.

Will there be effects on neutrophils?

Clinical trial data awaited.

Management of the severely neutropenic (ANC <500 cells/mm³) RA pt

Discontinue the causative agent if known; if not known, stop administration of all drugs until the aetiology is established.

Which category does the patient fall into:-

Otherwise well patient with neutropenia?

Immunocompetent patient presenting with neutropenia and compromised, requiring urgent treatment?

Immunocompromised patients presenting with neutropenia and compromised, requiring urgent treatment?

□ Barrier nurse if ANC < 100 cells/mm³.

Management of the severely neutropenic RA pt: some issues

Urgent management of septic shock

- Haematology specialist input
- Start specific antibiotic therapy. This often involves the use of thirdgeneration cephalosporins or equivalents.
- Treat areas of stomatitis and skin infections with local cleaning, antisepsis, and dental care.
- Control oral and gingival lesion pain with saline and hydrogen peroxide rinses and local anesthetic gels and gargles.
- If the condition is mild, with only neutropenia without a serious infection, withhold G-CSF.
- However, G-CSF may shorten the period to recovery and the duration of infection.

Summary

- Neutrophils are an important cell type in innate immunity
- Biologics targeting pro-inflammatory cytokines have two effects on neutrophils (best evidence for anti-TNF):
 - 1. Decreased magination leading to an increase in peripheral blood ANC
 - 2. Decreased neutrophil production from the bone marrow. This effect predominates in peripheral blood compartment because of the very short half life of neutrophils.
- Relative neutropenia occurs in a minority of patients treated with biologics targeting TNF, IL-1 and IL-6R. But severe neutropenia is rare.
- There is no obvious relationship between drug-induced neutropenia and serious infection in trial data.
- But we must be vigilant for the rare patient with complications!